

 Articles and information on C# and .NET development topics

 	Products	Color Palette Editor
	CopyTools
	Gif Animator
	Jewel Rush
	NBT Editor
	Sitemap Creator
	Slicr
	Spriter
	WebCopy

	Downloads	Files
	Source Code
	Open Source

	Blog	.NET Blog
	Product Blog

	Forums
	Support

 	Home
	Blog
	Extending the ImageBox component to display the contents of a PDF file using C#

 Blog
 Articles and information on C# and .NET development topics

 This content has moved - please find it at https://devblog.cyotek.com.

 Although these pages remain accessible, some content may not display correctly in future as the new blog evolves.

 Visit https://devblog.cyotek.com.

Extending the ImageBox component to display the contents of a PDF file using C#

 04 September 2011

 Richard Moss

c# | winforms | image | imagebox | pdf | ghostscript | convert

 2 comments

 Files

In this article, I'll describe how to extend the ImageBox
control discussed in earlier articles to be able to display PDF
files with the help of the GhostScript library and the
conversion library described in the previous article.

Getting Started

You can download the source code used in this article from the
links below, these are:

	Cyotek.GhostScript - core library providing GhostScript
integration support
	Cyotek.GhostScript.PdfConversion - support library for
converting a PDF document into images
	PdfImageBoxSample - sample project containing an updated
ImageBox control, and the extended PdfImageBox.

Please note that the native GhostScript DLL is not included in
these downloads, you will need to obtain that from the
GhostScript project page.

Extending the ImageBox

To start extending the ImageBox, create a new class and
inherit the ImageBox control. I also decided to override some
of the default properties, so I added a constructor which sets
the new values.

public PdfImageBox()
{
 // override some of the original ImageBox defaults
 this.GridDisplayMode = ImageBoxGridDisplayMode.None;
 this.BackColor = SystemColors.AppWorkspace;
 this.ImageBorderStyle = ImageBoxBorderStyle.FixedSingleDropShadow;

 // new pdf conversion settings
 this.Settings = new Pdf2ImageSettings();
}

To ensure correct designer support, override versions of the
properties with new DefaultValue attributes were added. With
this done, it's time to add the new properties that will support
viewing PDF files. The new properties are:

	PdfFileName - the filename of the PDF to view
	PdfPassword - specifies the password of the PDF file if one
is required to open it (note, I haven't actually tested that
this works!)
	Settings - uses the Pdf2ImageSettings class discussed
earlier to control quality settings for the converted
document.
	PageCache - an internal dictionary which stores a Bitmap
against a page number to cache pages after these have loaded.

With the exception of PageCache, each of these properties also
has backing event for change notifications, and as
Pdf2ImageSettings implements INotifyPropertyChanged we'll
also bind an event detect when the individual setting properties
are modified.

[Category("Appearance"), DefaultValue(typeof(Pdf2ImageSettings), "")]
public virtual Pdf2ImageSettings Settings
{
 get { return _settings; }
 set
 {
 if (this.Settings != value)
 {
 if (_settings != null)
 _settings.PropertyChanged -= SettingsPropertyChangedHandler;

 _settings = value;
 _settings.PropertyChanged += SettingsPropertyChangedHandler;

 this.OnSettingsChanged(EventArgs.Empty);
 }
 }
}

private void SettingsPropertyChangedHandler(object sender, PropertyChangedEventArgs e)
{
 this.OnSettingsChanged(e);
}

protected virtual void OnSettingsChanged(EventArgs e)
{
 this.OpenPDF();

 if (this.SettingsChanged != null)
 this.SettingsChanged(this, e);
}

Navigation support

Although the PdfImageBox doesn't supply a user interface for
navigating to different pages, we want to make it easy for the
hosting application to provide one. To support this, a new
CurrentPage property will be added for allowing the active
page to retrieved or set, and also a number of readonly
CanMove* properties. These properties allow the host to query
which navigation options are applicable in order to present the
correct UI.

[Browsable(false)]
public virtual int PageCount
{ get { return _converter != null ? _converter.PageCount : 0; } }

[Category("Appearance"), DefaultValue(1)]
public int CurrentPage
{
 get { return _currentPage; }
 set
 {
 if (this.CurrentPage != value)
 {
 if (value < 1 || value > this.PageCount)
 throw new ArgumentException("Page number is out of bounds");

 _currentPage = value;

 this.OnCurrentPageChanged(EventArgs.Empty);
 }
 }
}

[Browsable(false)]
public bool CanMoveFirst
{ get { return this.PageCount != 0 && this.CurrentPage != 1; } }

[Browsable(false)]
public bool CanMoveLast
{ get { return this.PageCount != 0 && this.CurrentPage != this.PageCount; } }

[Browsable(false)]
public bool CanMoveNext
{ get { return this.PageCount != 0 && this.CurrentPage < this.PageCount; } }

[Browsable(false)]
public bool CanMovePrevious
{ get { return this.PageCount != 0 && this.CurrentPage > 1; } }

Again, to make it easier for the host to connect to the control,
we also add some helper navigation methods.

public void FirstPage()
{
 this.CurrentPage = 1;
}

public void LastPage()
{
 this.CurrentPage = this.PageCount;
}

public void NextPage()
{
 this.CurrentPage++;
}

public void PreviousPage()
{
 this.CurrentPage--;
}

Finally, it can sometimes take a few seconds to convert a page
in a PDF file. To allow the host to provide a busy notification,
such as setting the wait cursor or displaying a status bar
message, we'll add a pair of events which will be called before
and after a page is converted.

public event EventHandler LoadingPage;

public event EventHandler LoadedPage;

Opening the PDF file

Each of the property changed handlers in turn call the OpenPDF
method. This method first clears any existing image cache and
then initializes the conversion class based on the current PDF
file name and quality settings. If the specified file is a valid
PDF, the first page is converted, cached, and displayed.

public void OpenPDF()
{
 this.CleanUp();

 if (!this.DesignMode)
 {
 _converter = new Pdf2Image()
 {
 PdfFileName = this.PdfFileName,
 PdfPassword = this.PdfPassword,
 Settings = this.Settings
 };

 this.Image = null;
 this.PageCache= new Dictionary<int, Bitmap>();
 _currentPage = 1;

 if (this.PageCount != 0)
 {
 _currentPage = 0;
 this.CurrentPage = 1;
 }
 }
}

private void CleanUp()
{
 // release bitmaps
 if (this.PageCache != null)
 {
 foreach (KeyValuePair<int, Bitmap> pair in this.PageCache)
 pair.Value.Dispose();
 this.PageCache = null;
 }
}

Displaying the image

Each time the CurrentPage property is changed, it calls the
SetPageImage method. This method first checks to ensure the
specified page is present in the cache. If it is not, it will
load the page in. Once the page is in the cache, it is then
displayed in the ImageBox, and the user can then pan and zoom
as with any other image.

protected virtual void SetPageImage()
{
 if (!this.DesignMode && this.PageCache != null)
 {
 lock (_lock)
 {
 if (!this.PageCache.ContainsKey(this.CurrentPage))
 {
 this.OnLoadingPage(EventArgs.Empty);
 this.PageCache.Add(this.CurrentPage, _converter.GetImage(this.CurrentPage));
 this.OnLoadedPage(EventArgs.Empty);
 }

 this.Image = this.PageCache[this.CurrentPage];
 }
 }
}

Note that we operate a lock during the execution of this method,
to ensure that you can't try and load the same page twice.

With this method in place, the control is complete and ready to
be used as a basic PDF viewer. In order to keep the article down
to a reasonable size, I've excluded some of the definitions,
overloads and helper methods; these can all be found in the
sample download below.

The sample project demonstrates all the features described above
and provides an example setting up a user interface for
navigating a PDF document.

Future changes

At the moment, the PdfImageBox control processes on page at a
time and caches the results. This means that navigation through
already viewed pages is fast, but displaying new pages can be
less than ideal. A possible enhancement would be to make the
control multithreaded, and continue to load pages on a
background thread.

Another issue is that as the control is caching the converted
images in memory, it may use a lot of memory in order to display
large PDF files. Not quite sure on the best approach to resolve
this one, either to "expire" older pages, or to keep only a
fixed number in memory. Or even save each page to a temporary
disk file.

Finally, I haven't put in any handling at all for if the
converter fails to convert a given page... I'll add this to a
future update, and hopefully get the code hosted on an SVN
server for interested parties.

Update History

	2011-09-04 - First published
	2020-11-21 - Updated formatting

 ← Previous: Convert a PDF into a series of images using C# and GhostScript

 Next: Detecting if an application is running as an elevated process, and spawning a new process using elevated permissions →

 Related articles you may be interested in

 	Displaying multi-page tiff files using the ImageBox control and C#
	Adding drag handles to an ImageBox to allow resizing of selection regions
	ImageBox 1.1.4.0 update
	ImageBox and TabList update's - virtual mode, pixel grid, bug fixes and more!
	ImageBox update, version 1.1.0.0
	Zooming to fit a region in a ScrollableControl
	Zooming into a fixed point on a ScrollableControl
	Arcade explosion generator
	Creating an image viewer in C# Part 5: Selecting part of an image
	Creating a scrollable and zoomable image viewer in C# Part 4
	Creating a scrollable and zoomable image viewer in C# Part 3
	Creating a scrollable and zoomable image viewer in C# Part 2
	Creating a scrollable and zoomable image viewer in C# Part 1

 Downloads

	Filename	Description	Version	Release Date	
	

 PdfImageBoxSample.zip

 	md5: 5176311d2ed74377312c76dfb6b5ec98

 	
 Sample project showing how to extend the ImageBox control in order to display convert and display PDF files in a .NET WinForms application with the help of GhostScript.

 	

 	04/09/2011	Download
	

 Cyotek.GhostScript.zip

 	md5: c9cc930135dc96e14ef83982b70cfb63

 	
 Work in progress class library for providing GhostScript integration in a .NET application.

 	

 	04/09/2011	Download
	

 Cyotek.GhostScript.PdfConversion.zip

 	md5: 574e909a3ebab8a19467809055c045f3

 	
 Class library for converting PDF files into images using GhostScript. Also requires the Cyotek.GhostScript assembly.

 	

 	04/09/2011	Download

 About The Author

 Richard Moss

 The founder of Cyotek, Richard enjoys creating new blog content for the site. Much more though, he likes to develop programs, and can often found writing reams of code. A long term gamer, he has aspirations in one day creating an epic video game. Until that time, he is mostly content with adding new bugs to WebCopy and the other Cyotek products.

 Leave a Comment

 While we appreciate comments from our users, please follow our posting guidelines. Have you tried the Cyotek Forums for support from Cyotek and the community?

 Your name:

 Your email address: (optional, will never be displayed)

Your URL: (optional)
Comments

Comment

 Styling with Markdown is supported

Submit

 Comments

 DotNetKicks.com

 #
 04 September 2011 Reply

 [b]Extending the ImageBox component to display the contents of a PDF file[/b]
You've been kicked (a good thing) - Trackback from DotNetKicks.com

 DotNetShoutout

 #
 04 September 2011 Reply

 [b]Extending the ImageBox component to display the contents of a PDF file using C#[/b]
Thank you for submitting this cool story - Trackback from DotNetShoutout

 Search

Donate

 This content may be used free of charge, but as with all free content there are costs involved to develop and maintain.

 If this site or its services have saved you time, please consider a donation to help with running costs and timely updates.

Donate

 Popular Tags

c#graphicsimageimageboxtoolswinforms

 View all tags

 Archives

	
 February 2024 (1)

	
 All of 2023 (2)

	
 All of 2022 (2)

	
 All of 2021 (2)

	
 All of 2020 (15)

	
 All of 2019 (15)

	
 All of 2018 (9)

	
 All of 2017 (25)

	
 All of 2016 (12)

	
 All of 2015 (17)

	
 All of 2014 (13)

	
 All of 2013 (17)

	
 All of 2012 (13)

	
 All of 2011 (9)

	
 All of 2010 (18)

	
 All of 2009 (1)

 Open Source

 	
 ImageBox Control

	
 ColorPicker Controls Suite

	
 Dithering Techniques

	
 CircularBuffer Library

	
 BMFont Parsing Library

	
 NBT Library

	
 TabList Control

	
 Add Projects Visual Studio Extension

	
 Simple Screenshot Capture

	
 MantisSharp Library

	
 FontDialog Replacement

	
 ScannerTest

	
 Registry Comparer Utility

	
 HTTP Crawler Test Website

	
 CyotekDownDetector

	
 ScriptingHostDemo

	
 SourceSafe to SVN Migration

	
 Skyline Generator

	
 ColorEcho Utility

	
 InternetGetCookieExDemo

	
 WadDemo

	
 ChemotaxisSimulation

	
 Azure Container Echo

	
 Farbfeld encoder/decoder

	
 Cyotek.QuickScan

	
 DoomPictureViewer

	
 ncpaintDemo

	
 Cyotek.Drawing.PaletteFormat.Fractint

	
 LangtonsAntSimulator

	
 Markdig.Keyboard

	
 Markdig MantisBT Extension

	
 MD5 CLI

	
 ScrollDemo

	
 Sprite Sheet Packer

	
 SvnGitMigrate

	
 RgbTriplets18 Palette Loader/Writer

	
 RIFF Palette Loader/Writer

	
 Cyotek.HistoricalDate

	
 Cyotek.FixExif

	
 go.cyotek.com

	
 todo

	
 Cyotek.Data.Ini

 Advertisements

 Recent Development Posts

 	
 Tools we use - 2023 edition
 02 February 2024

	
 Resolving SVN error "Could not open the requested SVN filesystem"
 25 April 2023

	
 Tools we use - 2022 edition
 01 January 2023

	
 Painting the borders of a custom control using WM_NCPAINT
 07 March 2022

 Recent Product Posts

 	
 CrowdStrike Falcon False Positives
 19 May 2021

	
 Introducing 64bit builds
 30 March 2021

	
 Removal of support for Windows Vista, Windows 8 and early versions of Windows 10
 19 March 2021

	
 WebCopy 1.8 - JavaScript Support
 29 June 2019

 Popular Posts

 	
 Creating a trackback handler using C#
 22 September 2010

	
 Visual Studio Extension for adding multiple projects to a solution
 12 October 2013

	
 Convert a PDF into a series of images using C# and GhostScript
 04 September 2011

	
 Arcade explosion generator
 03 June 2012

 HomePrivacy PolicyTerms of UseCopyright and TrademarksAboutContact UsSitemapSearchDocsDonate

 RSSBlog RSS

 Copyright © 2009-2024 Cyotek Ltd. All Rights Reserved.

