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In this article, I'll describe how to extend the ImageBox
control discussed in earlier articles to be able to display PDF
files with the help of the GhostScript library and the
conversion library described in the previous article.




Getting Started



You can download the source code used in this article from the
links below, these are:

	Cyotek.GhostScript - core library providing GhostScript
integration support
	Cyotek.GhostScript.PdfConversion - support library for
converting a PDF document into images
	PdfImageBoxSample - sample project containing an updated
ImageBox control, and the extended PdfImageBox.



Please note that the native GhostScript DLL is not included in
these downloads, you will need to obtain that from the
GhostScript project page.




Extending the ImageBox



To start extending the ImageBox, create a new class and
inherit the ImageBox control. I also decided to override some
of the default properties, so I added a constructor which sets
the new values.

public PdfImageBox()
{
  // override some of the original ImageBox defaults
  this.GridDisplayMode = ImageBoxGridDisplayMode.None;
  this.BackColor = SystemColors.AppWorkspace;
  this.ImageBorderStyle = ImageBoxBorderStyle.FixedSingleDropShadow;

  // new pdf conversion settings
  this.Settings = new Pdf2ImageSettings();
}


To ensure correct designer support, override versions of the
properties with new DefaultValue attributes were added. With
this done, it's time to add the new properties that will support
viewing PDF files. The new properties are:

	PdfFileName - the filename of the PDF to view
	PdfPassword - specifies the password of the PDF file if one
is required to open it (note, I haven't actually tested that
this works!)
	Settings - uses the Pdf2ImageSettings class discussed
earlier to control quality settings for the converted
document.
	PageCache - an internal dictionary which stores a Bitmap
against a page number to cache pages after these have loaded.


With the exception of PageCache, each of these properties also
has backing event for change notifications, and as
Pdf2ImageSettings implements INotifyPropertyChanged we'll
also bind an event detect when the individual setting properties
are modified.

[Category("Appearance"), DefaultValue(typeof(Pdf2ImageSettings), "")]
public virtual Pdf2ImageSettings Settings
{
  get { return _settings; }
  set
  {
    if (this.Settings != value)
    {
      if (_settings != null)
        _settings.PropertyChanged -= SettingsPropertyChangedHandler;

      _settings = value;
      _settings.PropertyChanged += SettingsPropertyChangedHandler;

      this.OnSettingsChanged(EventArgs.Empty);
    }
  }
}

private void SettingsPropertyChangedHandler(object sender, PropertyChangedEventArgs e)
{
  this.OnSettingsChanged(e);
}

protected virtual void OnSettingsChanged(EventArgs e)
{
  this.OpenPDF();

  if (this.SettingsChanged != null)
    this.SettingsChanged(this, e);
}



Navigation support



Although the PdfImageBox doesn't supply a user interface for
navigating to different pages, we want to make it easy for the
hosting application to provide one. To support this, a new
CurrentPage property will be added for allowing the active
page to retrieved or set, and also a number of readonly
CanMove* properties. These properties allow the host to query
which navigation options are applicable in order to present the
correct UI.

[Browsable(false)]
public virtual int PageCount
{ get { return _converter != null ? _converter.PageCount : 0; } }

[Category("Appearance"), DefaultValue(1)]
public int CurrentPage
{
  get { return _currentPage; }
  set
  {
    if (this.CurrentPage != value)
    {
      if (value < 1 || value > this.PageCount)
        throw new ArgumentException("Page number is out of bounds");

      _currentPage = value;

      this.OnCurrentPageChanged(EventArgs.Empty);
    }
  }
}

[Browsable(false)]
public bool CanMoveFirst
{ get { return this.PageCount != 0 && this.CurrentPage != 1; } }

[Browsable(false)]
public bool CanMoveLast
{ get { return this.PageCount != 0 && this.CurrentPage != this.PageCount; } }

[Browsable(false)]
public bool CanMoveNext
{ get { return this.PageCount != 0 && this.CurrentPage < this.PageCount; } }

[Browsable(false)]
public bool CanMovePrevious
{ get { return this.PageCount != 0 && this.CurrentPage > 1; } }


Again, to make it easier for the host to connect to the control,
we also add some helper navigation methods.

public void FirstPage()
{
  this.CurrentPage = 1;
}

public void LastPage()
{
  this.CurrentPage = this.PageCount;
}

public void NextPage()
{
  this.CurrentPage++;
}

public void PreviousPage()
{
  this.CurrentPage--;
}


Finally, it can sometimes take a few seconds to convert a page
in a PDF file. To allow the host to provide a busy notification,
such as setting the wait cursor or displaying a status bar
message, we'll add a pair of events which will be called before
and after a page is converted.

public event EventHandler LoadingPage;

public event EventHandler LoadedPage;


Opening the PDF file

Each of the property changed handlers in turn call the OpenPDF
method. This method first clears any existing image cache and
then initializes the conversion class based on the current PDF
file name and quality settings. If the specified file is a valid
PDF, the first page is converted, cached, and displayed.

public void OpenPDF()
{
  this.CleanUp();

  if (!this.DesignMode)
  {
    _converter = new Pdf2Image()
    {
      PdfFileName = this.PdfFileName,
      PdfPassword = this.PdfPassword,
      Settings = this.Settings
    };

    this.Image = null;
    this.PageCache= new Dictionary<int, Bitmap>();
    _currentPage = 1;

    if (this.PageCount != 0)
    {
      _currentPage = 0;
      this.CurrentPage = 1;
    }
  }
}

private void CleanUp()
{
  // release  bitmaps
  if (this.PageCache != null)
  {
    foreach (KeyValuePair<int, Bitmap> pair in this.PageCache)
      pair.Value.Dispose();
    this.PageCache = null;
  }
}


Displaying the image

Each time the CurrentPage property is changed, it calls the
SetPageImage method. This method first checks to ensure the
specified page is present in the cache. If it is not, it will
load the page in. Once the page is in the cache, it is then
displayed in the ImageBox, and the user can then pan and zoom
as with any other image.

protected virtual void SetPageImage()
{
  if (!this.DesignMode && this.PageCache != null)
  {
    lock (_lock)
    {
      if (!this.PageCache.ContainsKey(this.CurrentPage))
      {
        this.OnLoadingPage(EventArgs.Empty);
        this.PageCache.Add(this.CurrentPage, _converter.GetImage(this.CurrentPage));
        this.OnLoadedPage(EventArgs.Empty);
      }

      this.Image = this.PageCache[this.CurrentPage];
    }
  }
}


Note that we operate a lock during the execution of this method,
to ensure that you can't try and load the same page twice.

With this method in place, the control is complete and ready to
be used as a basic PDF viewer. In order to keep the article down
to a reasonable size, I've excluded some of the definitions,
overloads and helper methods; these can all be found in the
sample download below.

The sample project demonstrates all the features described above
and provides an example setting up a user interface for
navigating a PDF document.


Future changes



At the moment, the PdfImageBox control processes on page at a
time and caches the results. This means that navigation through
already viewed pages is fast, but displaying new pages can be
less than ideal. A possible enhancement would be to make the
control multithreaded, and continue to load pages on a
background thread.

Another issue is that as the control is caching the converted
images in memory, it may use a lot of memory in order to display
large PDF files. Not quite sure on the best approach to resolve
this one, either to "expire" older pages, or to keep only a
fixed number in memory. Or even save each page to a temporary
disk file.

Finally, I haven't put in any handling at all for if the
converter fails to convert a given page... I'll add this to a
future update, and hopefully get the code hosted on an SVN
server for interested parties.
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            PdfImageBoxSample.zip
          
                      	md5: 5176311d2ed74377312c76dfb6b5ec98 


                  	
          Sample project showing how to extend the ImageBox control in order to display convert and display PDF files in a .NET WinForms application with the help of GhostScript.
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            Cyotek.GhostScript.zip
          
                      	md5: c9cc930135dc96e14ef83982b70cfb63 


                  	
          Work in progress class library for providing GhostScript integration in a .NET application.


        	

        	04/09/2011	Download
	
          
            Cyotek.GhostScript.PdfConversion.zip
          
                      	md5: 574e909a3ebab8a19467809055c045f3 


                  	
          Class library for converting PDF files into images using GhostScript. Also requires the Cyotek.GhostScript assembly.
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