

 Articles and information on C# and .NET development topics

 	Products	Color Palette Editor
	CopyTools
	Gif Animator
	Jewel Rush
	NBT Editor
	Sitemap Creator
	Slicr
	Spriter
	WebCopy

	Downloads	Files
	Source Code
	Open Source

	Blog	.NET Blog
	Product Blog

	Forums
	Support

 	Home
	Blog
	Displaying the contents of a PDF file in an ASP.NET application using GhostScript

 Blog
 Articles and information on C# and .NET development topics

 This content has moved - please find it at https://devblog.cyotek.com.

 Although these pages remain accessible, some content may not display correctly in future as the new blog evolves.

 Visit https://devblog.cyotek.com.

Displaying the contents of a PDF file in an ASP.NET application using GhostScript

 10 July 2012

 Richard Moss

c# | image | asp.net | pdf | ghostscript | convert

 3 comments

 Files

After receiving quite a few requests on making the PDF image
conversion work in a web application, I wanted to see how
hard it would be to do. Not hard at all as it turns out, I had a
nice working sample running with a bare 5 minutes of work.

The sample available for download below is a basic ASP.NET
application, comprised of a single page with an IHttpHandler
for displaying the image. In order to make this sample as easy
as possible, it uses pure server side controls and code, nothing
client side.

Getting Started

In order to run this sample, you'll need the
Cyotek.GhostScript and
Cyotek.GhostScript.PdfConversion.zip components described
in a previous article.

You'll also need to download GhostScript. As with my other
articles on the subject, please make sure you check their
license terms - they seem very keen that people don't use the
GPL version or distribute GhostScript without a commercial
license.

Locating gsdll32.dll

In order for this to work, gsdll32.dll needs to be somewhere
in your applications path. This could be in your system32
directory on 32bit Windows, or SysWOW64 on 64bit Windows.

While developing this sample, I also tried having the file in
the bin directory of the website - this also worked fine.
However, as the website was running on my local machine, it's
probably running in Full Trust, and I have no idea if it will
work in Medium Trust or lower.

I'm running 64bit Windows

Congratulations! I have nothing but issues with 32bit web
servers. But I digress. The sample projects I have provided on
this website all use the 32bit version of GhostScript. There is
a 64bit version available, but I haven't downloaded it to test.
Your options should be as follows:

	Build against the 64bit GhostScript DLL. This may need some
refactoring if their public API has changed. At the very
least, you'll need to change the DLL filename in the native
method calls.
	Using IIS7 or higher? Keep using the 32bit version, and set
your worker pool to run in 32bit mode
	Using IIS6? Commiserations, I feel your pain. The only option
here, if you stay 32bit, is to have the entire IIS run as
32bit.

I have tested on a Windows 7 Professional 64bit machine as
follows:

	Firstly, using IISExpress which is running as a 32bit process
	Secondly, using IIS7 with a custom application pool running in
32bit mode

Both of these scenarios worked perfectly well.

Creating the solution

Create a new ASP.NET Web Forms Site

Note: Even though this example uses pure WebForms, there's no
reason that this sort of code won't work fine in ASP.NET MVC
or any other .NET framework of your choice.

Open up Default.aspx and add some controls similar to the
following:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="GhostScriptWebTest._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>PDF Conversion Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <p>
 <asp:LinkButton runat="server" ID="previousLinkButton" Text="Previous" OnClick="previousLinkButton_Click" />
 <asp:LinkButton runat="server" ID="nextLinkButton" Text="Next" OnClick="nextLinkButton_Click" />
 </p>
 <p>
 <asp:Image runat="server" ID="pdfImage" ImageUrl="~/PdfImage.ashx?fileName=sample.pdf&page=1" />
 </p>
 </div>
 </form>
</body>
</html>

The controls should be fairly self explanatory! The main thing
of interest is the pdfImage Image control - this will call a
Generic Handler that I'll describe in the next section. Note
that VS2010 and VS2012 have another option, an ASP.NET
Handler - this implements the same IHttpHandler interface
but doesn't have a .ashx file and is registered differently.
If you are using IIS7 or above, you're probably better off using
that.

Note that by default the pdfImage control is pointing to a
sample file named sample.pdf - add any old PDF to the root of
your website and name it sample. Ensure that the Build
Action for the PDF is set to Content, otherwise it won't
be deployed with your application.

Creating the image handler

Tutorials on creating image handlers with IHttpHandler can be
found scattered throughout the net, so I'll not go into how they
work, but just describe the implementation I'm using in this
example. Add a new generic handler to your project, then fill in
the ProcessRequest method as follows. Make sure you add the
two GhostScript API components to your solution and add
references to them to your web application first!

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Web;
using Cyotek.GhostScript.PdfConversion;

namespace GhostScriptWebTest
{
 public class PdfImage : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 string fileName;
 int pageNumber;
 Pdf2Image convertor;
 Bitmap image;

 fileName = context.Server.MapPath("~/" + context.Request.QueryString["fileName"]);
 pageNumber = Convert.ToInt32(context.Request.QueryString["page"]);

 // convert the image
 convertor = new Pdf2Image(fileName);
 image = convertor.GetImage(pageNumber);

 // set the content type
 context.Response.ContentType = "image/png";

 // save the image directly to the response stream
 image.Save(context.Response.OutputStream, ImageFormat.Png);
 }

 public bool IsReusable
 { get { return true; } }
 }
}

Again, this is extremely simple code. I extract the query string
of the request to obtain the file name of the PDF document to
convert, and the page to display. I then create an instance of
the Pdf2Image class, and grab an image of the specified page.

Next, you need to set the ContentType of the Response object
so the web browser knows what to do with your content. Finally,
I save the image directly to the response's OutputStream. Make
sure that the format you save the image as matches the content
type you've specified.

With these steps complete, building and running the website
should present you with a pair of hyper links, and the first
page of your PDF file as a static image. [Well, it will if you
add a pair of blank event handlers for those defined for the two
hyperlink buttons anyway]

Simple navigation

Now that we can display our PDF, we'll add some basic
navigation. Open up the code behind file for Default.aspx and
fill in the event handlers for the two hyperlink buttons.

using System;
using System.Collections.Specialized;
using System.Web;
using Cyotek.GhostScript.PdfConversion;

namespace GhostScriptWebTest
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void previousLinkButton_Click(object sender, EventArgs e)
 {
 this.IncrementPage(-1);
 }

 protected void nextLinkButton_Click(object sender, EventArgs e)
 {
 this.IncrementPage(1);
 }

 private void IncrementPage(int increment)
 {
 NameValueCollection queryString;
 int pageNumber;
 string pdfFileName;
 Pdf2Image converter;

 queryString = HttpUtility.ParseQueryString(pdfImage.ImageUrl.Substring(pdfImage.ImageUrl.IndexOf("?")));
 pdfFileName = queryString["fileName"];
 pageNumber = Convert.ToInt32(queryString["page"]) + increment;
 converter = new Pdf2Image(this.Server.MapPath("~/" + pdfFileName));

 if (pageNumber > 0 && pageNumber <= converter.PageCount)
 pdfImage.ImageUrl = string.Format("~/PdfImage.ashx?fileName={0}&page={1}", pdfFileName, pageNumber);
 }
 }
}

As with the image handler, this code simply extracts the file
name of the PDF file and the current page number. It also
creates a new instance of the Pdf2Image class in order to
obtain the number of pages in the document. If the new page
number is in range, it updates the ImageUrl of the pdfImage
causing the image handler to pull back the next page.

In Conclusion

This sample is pretty inefficient and at the very least should
be caching the images. But, it's as simple an example as I can
make. Hopefully someone will find it useful. At the present time
I'm not working with the GhostScript API library so I suspect
this will be the last article on the subject for the time being.

Update History

	2012-07-10 - First published
	2020-11-21 - Updated formatting

 ← Previous: Arcade explosion generator

 Next: Creating a multi-paged container control with design time support →

 Downloads

	Filename	Description	Version	Release Date	
	

 GhostScriptWebTest.zip

 	md5: 0b163c5c6596db5940457e81286ce656

 	
 Sample ASP.NET website which shows how to convert PDF files into images and display them in a web browser.

 	

 	10/07/2012	Download

 About The Author

 Richard Moss

 The founder of Cyotek, Richard enjoys creating new blog content for the site. Much more though, he likes to develop programs, and can often found writing reams of code. A long term gamer, he has aspirations in one day creating an epic video game. Until that time, he is mostly content with adding new bugs to WebCopy and the other Cyotek products.

 Leave a Comment

 While we appreciate comments from our users, please follow our posting guidelines. Have you tried the Cyotek Forums for support from Cyotek and the community?

 Your name:

 Your email address: (optional, will never be displayed)

Your URL: (optional)
Comments

Comment

 Styling with Markdown is supported

Submit

 Comments

 veasna

 #
 27 November 2014 Reply

 Good evening,

I can not make it works on my aspx, with C# code. Do you have a complete working sample which is just having single page?
By the way, does Pdf2Image class is part of GhostScript Library or it is in another library?

Best regards,

Veasna

 Richard Moss

 #
 29 November 2014 Reply

 Hello,

The example project for this article requires both libraries from the article available at http://www.cyotek.com/blog/convert-a-pdf-into-a-series-of-images-using-csharp-and-ghostscript, in addition to GhostScript itself. The example was working perfectly well when I first wrote it, although I haven't looked at GhostScript since publishing these, and probably won't be revisiting the subject anytime soon.

Regards;
Richard Moss

 Bilal

 #
 22 December 2014 Reply

 hi,its works perfect on my local windows 7.
it's not working on windows server 64 bit ,although i change application pool to 32 bit Enable True.
please help!

 Search

Donate

 This content may be used free of charge, but as with all free content there are costs involved to develop and maintain.

 If this site or its services have saved you time, please consider a donation to help with running costs and timely updates.

Donate

 Popular Tags

c#graphicsimageimageboxtoolswinforms

 View all tags

 Archives

	
 February 2024 (1)

	
 All of 2023 (2)

	
 All of 2022 (2)

	
 All of 2021 (2)

	
 All of 2020 (15)

	
 All of 2019 (15)

	
 All of 2018 (9)

	
 All of 2017 (25)

	
 All of 2016 (12)

	
 All of 2015 (17)

	
 All of 2014 (13)

	
 All of 2013 (17)

	
 All of 2012 (13)

	
 All of 2011 (9)

	
 All of 2010 (18)

	
 All of 2009 (1)

 Open Source

 	
 ImageBox Control

	
 ColorPicker Controls Suite

	
 Dithering Techniques

	
 CircularBuffer Library

	
 BMFont Parsing Library

	
 NBT Library

	
 TabList Control

	
 Add Projects Visual Studio Extension

	
 Simple Screenshot Capture

	
 MantisSharp Library

	
 FontDialog Replacement

	
 ScannerTest

	
 Registry Comparer Utility

	
 HTTP Crawler Test Website

	
 CyotekDownDetector

	
 ScriptingHostDemo

	
 SourceSafe to SVN Migration

	
 Skyline Generator

	
 ColorEcho Utility

	
 InternetGetCookieExDemo

	
 WadDemo

	
 ChemotaxisSimulation

	
 Azure Container Echo

	
 Farbfeld encoder/decoder

	
 Cyotek.QuickScan

	
 DoomPictureViewer

	
 ncpaintDemo

	
 Cyotek.Drawing.PaletteFormat.Fractint

	
 LangtonsAntSimulator

	
 Markdig.Keyboard

	
 Markdig MantisBT Extension

	
 MD5 CLI

	
 ScrollDemo

	
 Sprite Sheet Packer

	
 SvnGitMigrate

	
 RgbTriplets18 Palette Loader/Writer

	
 RIFF Palette Loader/Writer

	
 Cyotek.HistoricalDate

	
 Cyotek.FixExif

	
 go.cyotek.com

	
 todo

	
 Cyotek.Data.Ini

 Advertisements

 Recent Development Posts

 	
 Tools we use - 2023 edition
 02 February 2024

	
 Resolving SVN error "Could not open the requested SVN filesystem"
 25 April 2023

	
 Tools we use - 2022 edition
 01 January 2023

	
 Painting the borders of a custom control using WM_NCPAINT
 07 March 2022

 Recent Product Posts

 	
 CrowdStrike Falcon False Positives
 19 May 2021

	
 Introducing 64bit builds
 30 March 2021

	
 Removal of support for Windows Vista, Windows 8 and early versions of Windows 10
 19 March 2021

	
 WebCopy 1.8 - JavaScript Support
 29 June 2019

 Popular Posts

 	
 Creating a trackback handler using C#
 22 September 2010

	
 Visual Studio Extension for adding multiple projects to a solution
 12 October 2013

	
 Convert a PDF into a series of images using C# and GhostScript
 04 September 2011

	
 Arcade explosion generator
 03 June 2012

 HomePrivacy PolicyTerms of UseCopyright and TrademarksAboutContact UsSitemapSearchDocsDonate

 RSSBlog RSS

 Copyright © 2009-2024 Cyotek Ltd. All Rights Reserved.

